Source code for torch_geometric.transforms.remove_self_loops

from typing import Union

from torch_geometric.data import Data, HeteroData
from torch_geometric.data.datapipes import functional_transform
from torch_geometric.transforms import BaseTransform
from torch_geometric.utils import remove_self_loops


[docs]@functional_transform('remove_self_loops') class RemoveSelfLoops(BaseTransform): r"""Removes all self-loops in the given homogeneous or heterogeneous graph (functional name: :obj:`remove_self_loops`). Args: attr (str, optional): The name of the attribute of edge weights or multi-dimensional edge features to pass to :meth:`torch_geometric.utils.remove_self_loops`. (default: :obj:`"edge_weight"`) """ def __init__(self, attr: str = 'edge_weight') -> None: self.attr = attr def forward( self, data: Union[Data, HeteroData], ) -> Union[Data, HeteroData]: for store in data.edge_stores: if store.is_bipartite() or 'edge_index' not in store: continue store.edge_index, store[self.attr] = remove_self_loops( store.edge_index, edge_attr=store.get(self.attr, None), ) return data