torch_geometric.nn.attention.SGFormerAttention
- class SGFormerAttention(channels: int, heads: int = 1, head_channels: int = 64, qkv_bias: bool = False)[source]
Bases:
Module
The simple global attention mechanism from the “SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations” paper.
- Parameters:
channels (int) – Size of each input sample.
heads (int, optional) – Number of parallel attention heads. (default:
1.
)head_channels (int, optional) – Size of each attention head. (default:
64.
)qkv_bias (bool, optional) – If specified, add bias to query, key and value in the self attention. (default:
False
)
- forward(x: Tensor, mask: Optional[Tensor] = None) Tensor [source]
Forward pass.
- Parameters:
x (torch.Tensor) – Node feature tensor \(\mathbf{X} \in \mathbb{R}^{B \times N \times F}\), with batch-size \(B\), (maximum) number of nodes \(N\) for each graph, and feature dimension \(F\).
mask (torch.Tensor, optional) – Mask matrix \(\mathbf{M} \in {\{ 0, 1 \}}^{B \times N}\) indicating the valid nodes for each graph. (default:
None
)
- Return type: